Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed 퓁q Minimization
نویسندگان
چکیده
In this paper, we first study q minimization and its associated iterative reweighted algorithm for recovering sparse vectors. Unlike most existing work, we focus on unconstrained q minimization, for which we show a few advantages on noisy measurements and/or approximately sparse vectors. Inspired by the results in [Daubechies et al., Comm. Pure Appl. Math., 63 (2010), pp. 1–38] for constrained q minimization, we start with a preliminary yet novel analysis for unconstrained q minimization, which includes convergence, error bound, and local convergence behavior. Then, the algorithm and analysis are extended to the recovery of low-rank matrices. The algorithms for both vector and matrix recovery have been compared to some state-of-the-art algorithms and show superior performance on recovering sparse vectors and low-rank matrices.
منابع مشابه
Improved Iteratively Reweighted Least Squares for Unconstrained
In this paper, we first study q minimization and its associated iterative reweighted algorithm for recovering sparse vectors. Unlike most existing work, we focus on unconstrained q minimization, for which we show a few advantages on noisy measurements and/or approximately sparse vectors. Inspired by the results in [Daubechies et al., Comm. Pure Appl. Math., 63 (2010), pp. 1–38] for constrained ...
متن کاملConvergence Analysis of Generalized Iteratively Reweighted Least Squares Algorithms on Convex Function Spaces
The computation of robust regression estimates often relies on minimization of a convex functional on a convex set. In this paper we discuss a general technique for a large class of convex functionals to compute the minimizers iteratively which is closely related to majorization-minimization algorithms. Our approach is based on a quadratic approximation of the functional to be minimized and inc...
متن کاملA comparison of typical ℓp minimization algorithms
Recently, compressed sensing has been widely applied to various areas such as signal processing, machine learning, and pattern recognition. To find the sparse representation of a vector w.r.t. a dictionary, an l1 minimization problem, which is convex, is usually solved in order to overcome the computational difficulty. However, to guarantee that the l1 minimizer is close to the sparsest solutio...
متن کاملA comparison of the computational performance of Iteratively Reweighted Least Squares and alternating minimization algorithms for ℓ1 inverse problems
Alternating minimization algorithms with a shrinkage step, derived within the Split Bregman (SB) or Alternating Direction Method of Multipliers (ADMM) frameworks, have become very popular for `-regularized problems, including Total Variation and Basis Pursuit Denoising. It appears to be generally assumed that they deliver much better computational performance than older methods such as Iterativ...
متن کاملIterative Reweighted Algorithms for Matrix Rank Minimization Iterative Reweighted Algorithms for Matrix Rank Minimization
The problem of minimizing the rank of a matrix subject to affine constraints has many applications in machine learning, and is known to be NP-hard. One of the tractable relaxations proposed for this problem is nuclear norm (or trace norm) minimization of the matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013